Single precision floating point is ideal to implement these simple recursive filters. The use of integers is possible, but it is much more difficult. There are two main problems. First, the round-off error from the limited number of bits can degrade the response of the filter, or even make it unstable. Second, the fractional values of the recursion coefficients must be handled with integer math. One way to attack this problem is to express each coefficient as a fraction. For example, 0.15 becomes 19/128. Instead of multiplying by 0.15, you first multiply by 19 and then divide by 128. Another way is to replace the multiplications with look-up tables. For example, a 12 bit ADC produces samples with a value between 0 and 4095. Instead of multiplying each sample by 0.15, you pass the samples through a look-up table that is 4096 entries long. The value obtained from the look-up table is equal to 0.15 times the value entering the look-up table. This method is very fast, but it does require extra memory; a separate look-up table is needed for each coefficient. Before you try either of these integer methods, make sure the recursive algorithm for the moving average filter will not suit your needs. It loves integers.